Math, asked by soumikamink, 4 months ago

If tan A = 1 and tan B = \sqrt{3}
; evaluate :
(i) cos A cos B - sin A sin B
(ii) sin A cos B + cos A sin B​

Answers

Answered by AssasianCreed
7

Question :-

If tan A = 1 and tan B = \sqrt{3}

; evaluate :

  • (i) cos A cos B - sin A sin B

  • (ii) sin A cos B + cos A sin B

Given :-

  • tanA = 1

  • tanB =  \sqrt{3}

To find :-

  • (i) cos A cos B - sin A sin B

  • (ii) sin A cos B + cos A sin B

Solution :-

 \large \implies \tan(A)  = 1 \bf  \:  \:  \:  \: (given)

 \\ \implies \large  \cancel{tan}(A)  =  \cancel{tan}45^{\circ}

 \\  \large \implies \: A = 45^{\circ}

 \\  \large \implies \tan(B)  =  \sqrt{3}  \bf \:  \:  \:   (given)

 \large \implies \ \cancel{tan}(B)  =    \cancel{tan}60^{\circ}

 \\ \large \implies \: B = 60^{\circ}

 \\  (1) \:  \large \cos A \times  \cos B -  \sin A ×  \sin B

  \\  \large \implies\cos45°× \cos 60°- \sin 45°- \sin 60°

 \large =  \dfrac{1}{ \sqrt{2} }  \times  \dfrac{1}{2}  -  \dfrac{1}{ \sqrt{2} }  \times  \dfrac{ \sqrt{3} }{2}

 \\   \large  = \frac{1}{2 \sqrt{2} } -  \frac{ \sqrt{3} }{2 \sqrt{2} }

 \\  \large  =  \frac{1 -  \sqrt{3} }{2 \sqrt{2} }

Now rationalise the denominator

 \\  \large =  \frac{1 -  \sqrt{3} }{2 \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }

 \\  =  \large  \frac{ \sqrt{2} -  \sqrt{6}  }{4}

\\  (2) \:  \large \ \sin  A \times  \cos B  +   \ \cos  A ×  \sin B

\\  \large \implies\ \sin 45°× \cos 60°- \ \cos  45°- \sin 60°

\large =  \dfrac{1}{ \sqrt{2} }  \times  \dfrac{1}{2}   +  \dfrac{1}{ \sqrt{2} }  \times  \dfrac{ \sqrt{3} }{2}

 \\   \large  = \frac{1}{2 \sqrt{2} }  +  \frac{ \sqrt{3} }{2 \sqrt{2} }

\\  \large  =  \frac{1  +  \sqrt{3} }{2 \sqrt{2} }

Now rationalise the denominator

 \\  \large =  \frac{1  +  \sqrt{3} }{2 \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }

 \\  =  \large  \frac{ \sqrt{2}  +  \sqrt{6}  }{4}

Similar questions