Math, asked by sridevisen, 1 year ago

if tan A=1/root 3 then find the value of sin2A

Answers

Answered by 15121115anil
21
sin2A = 2tanA/1+tan²

given :- tanA = 1/√3

so

sin2A = 2×1√3/1+ (1/√3)²

= 2/√3 ×3/4

= √3/2

## hope it can help you ....♠
Answered by Anonymous
4

Given : The value of tanA is 1/√3

To find : The value of sin2A

Solution :

We can simply solve this mathematical problem by using the following mathematical process. (our goal is to calculate the value of sin2A)

Here, we will be using general trigonometric identities, in order to calculate the value of sin2A.

So,

= sin2A

=  \frac{2 \tan A }{1 +  {\tan }^{2} A}

 =  \frac{2 \times  \frac{1}{ \sqrt{3} } }{1 +  { (\frac{1}{ \sqrt{3} }) }^{2} }

 =  \frac{ \frac{2}{ \sqrt{3} } }{1 +  \frac{1}{3} }

 =  \frac{ \frac{2}{ \sqrt{3} } }{ \frac{3 \times 1 + 1}{3} }

 =  \frac{ \frac{2}{ \sqrt{3} } }{ \frac{4}{3} }

 =  \frac{2}{ \sqrt{3} }  \times  \frac{3}{4}

 =  \frac{ \sqrt{3} }{2}

(This value of sin2A will be considered as the final result of this mathematical problem.)

Used formula :

  • sin2A =  \frac{2 \tan A }{1 +  {\tan }^{2} A}

Hence, the value of sin2A is  \frac{ \sqrt{3} }{2}

Similar questions