If (tan A+1)(tan A-1)=0 then find the value of A.
Answers
Answered by
1
Answer:
∴x=±
2
1
Step-by-step explanation:
Answer
Let A=tan
−1
x−2
x−1
and B=tan
−1
x+2
x+1
Now,
tan(A+B)=tan
4
π
∴
1−tanAtanB
tanA+tanB
=1
∴tanA+tanB=1−tanAtanB
∴
x−2
x−1
+
x+2
x+1
=1−
x−2
x−1
×
x+2
x+1
∴(x−1)(x+2)+(x+1)(x−2)=1−(x−1)(x+1)
∴x
2
+x−2+x
2
−x−2=x
2
−4−x
2
+1
∴2x
2
=1
∴x=±
2
1
This is the required solution.
Similar questions