If tan A+ 1 /tanA=2. show
tan ²A+1/tan²A=2
Answers
Answered by
1
Answer:
(tan a + I / tan a)^2 = tan^2a + 1/tan^2a + 2
(as (a+b)^2 = a^2 + b^2 + 2ab)
2^2 = tan^2a + 1/tan^2a + 2
4 = tan^2a + 1/tan^2a + 2
4-2 = tan^2a + 1/tan^2a
2 = tan^2a + 1/tan^2a
hence proved
Answered by
2
Step-by-step explanation:
cotA= 1/tanA
so,
tanA+cotA=2....(1)
at A=45°
it satisfied eqn 1
now ,
=(tan^(45°)+1)/tan^2(45°)
=(1+1)/1^2
=2/1
=2
Similar questions