Math, asked by pankaj167996gmailcom, 1 year ago

if tan A =1 ,then find the values of sinA+cosA/secA+cosecA​

Answers

Answered by abhi569
8
It is given that the numeric value of tanA is 1 . And, we know that tane is the ratio of sine and cosine of the same angle.

Thus,
= > tanA = 1

= > sinA / cosA = 1

= > sinA = cosA -----: ( 1 )


Also, from the properties of trigonometry :
• sinA = 1 / cosecA
• cosA = 1 / secA


= > 1 / cosecA = 1 / secA

= > secA = cosecA ----: ( 2 )



Therefore,
= > ( sinA + cosA ) / ( secA + cosecA )

From ( 1 ) , sinA = cosA
From ( 2 ), secA = cosecA


So,
= > ( sinA + sinA ) / ( cosecA + cosecA )

= > 2 sinA / 2 cosecA

= > sinA / cosecA

= > sinA / ( 1 / sinA )

= > sin²A


And, tanA = 1 = > tanA = tan45° = > A = 45°

= > sin² 45°

= > ( 1 / √2 )²

= > 1 / 2



Hence the numeric value of sinA + cosA / secA + cosecA is 1 / 2.
 \:

Similar questions