if tan A =1 ,then find the values of sinA+cosA/secA+cosecA
Answers
Answered by
8
It is given that the numeric value of tanA is 1 . And, we know that tane is the ratio of sine and cosine of the same angle.
Thus,
= > tanA = 1
= > sinA / cosA = 1
= > sinA = cosA -----: ( 1 )
Also, from the properties of trigonometry :
• sinA = 1 / cosecA
• cosA = 1 / secA
= > 1 / cosecA = 1 / secA
= > secA = cosecA ----: ( 2 )
Therefore,
= > ( sinA + cosA ) / ( secA + cosecA )
From ( 1 ) , sinA = cosA
From ( 2 ), secA = cosecA
So,
= > ( sinA + sinA ) / ( cosecA + cosecA )
= > 2 sinA / 2 cosecA
= > sinA / cosecA
= > sinA / ( 1 / sinA )
= > sin²A
And, tanA = 1 = > tanA = tan45° = > A = 45°
= > sin² 45°
= > ( 1 / √2 )²
= > 1 / 2
Hence the numeric value of sinA + cosA / secA + cosecA is 1 / 2.
Thus,
= > tanA = 1
= > sinA / cosA = 1
= > sinA = cosA -----: ( 1 )
Also, from the properties of trigonometry :
• sinA = 1 / cosecA
• cosA = 1 / secA
= > 1 / cosecA = 1 / secA
= > secA = cosecA ----: ( 2 )
Therefore,
= > ( sinA + cosA ) / ( secA + cosecA )
From ( 1 ) , sinA = cosA
From ( 2 ), secA = cosecA
So,
= > ( sinA + sinA ) / ( cosecA + cosecA )
= > 2 sinA / 2 cosecA
= > sinA / cosecA
= > sinA / ( 1 / sinA )
= > sin²A
And, tanA = 1 = > tanA = tan45° = > A = 45°
= > sin² 45°
= > ( 1 / √2 )²
= > 1 / 2
Hence the numeric value of sinA + cosA / secA + cosecA is 1 / 2.
Similar questions