Math, asked by amalkrish24, 11 months ago

If tan A=15/8, find the value of sinA

Answers

Answered by Ajourneyalone
2

Answer:

Let right angle at B

Tan A = oppo/adj.

= 15/8 (given)

By pythagores therom

AC^2 = AB^2 + BC^2

AC^2 = (15)^2 + (8)^2

Ac ^2 = 225 +64

AC^2 = 289

Ac =17

Hypotenuse is 17

So, sinA = oppo. /hypo

SinA = 15/17

Attachments:
Answered by lAravindReddyl
17

\boxed{\mathsf{\green{Answer}} }

\mathsf{sinA = \dfrac{15}{17}}

\boxed{\mathsf{\green{Explanation}} }

Given:

\mathsf{tanA = \dfrac{15}{8}}

To Find:

sinA

Solution:

w.k.t,

\blue{\boxed{\bold{\pink{tanA = \dfrac{Opposite \:  side}{Adjacent \:side}}} }}

From Pythagoras theorem

(Hypoteneuse)² = (Adj.side)² + (opp.side)²

\mathsf{Hyopteneuse = \sqrt{{15}^{2}+{8}^{2}}}

\mathsf{Hyopteneuse = \sqrt{225+64}}

\mathsf{Hyopteneuse = \sqrt{289}}

\mathsf{Hyopteneuse =17 }

\blue{\boxed{\bold{\red{sinA = \dfrac{Opposite \:  side}{ Hypoteneuse}}} }}

\mathsf{sinA = \dfrac{15}{17}}

\texttt{\blue{Aravind}\:\red{Reddy}....!}

Similar questions