Math, asked by Nallanisivarani, 9 months ago

if tan A=15/8 then find the value of
sin A -COSA​

Answers

Answered by sreeh123flyback
2

Step-by-step explanation:

tan a=sin a/cos a

 \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  =  \frac{15}{8}  \\  \sin( \alpha )  =  \frac{15 \cos( \alpha ) }{8}  \\  \cos( \alpha ) =  \cos( \alpha )  \\  \sin( \alpha )  -  \cos( \alpha )  =  \\  \frac{15 \cos( \alpha ) }{8}  -  \cos( \alpha )  = \frac{7 \cos( \alpha ) }{8}  \\  \tan( \alpha  )  =  \frac{opp}{adj}  \\  \cos( \alpha )  =  \frac{8}{17}   \\  \sin( \alpha )  -  \cos( \alpha )  =  \frac{7 \cos( \alpha ) }{8}  =  \frac{7 \times 8}{17 \times 8}  \\  =  \frac{7}{17}

Answered by Anonymous
0

Step-by-step explanation:

tan A = 15/8 = P/B

Now,

P = 15

B = 8

H = ?

H^2 = ( P )^2 + ( B )^2

= ( 15 )^2 + ( 8 )^2

= 225 + 64

= 289

H = 17

sin A = P/H

= 15/17

cos A = B/H

= 8/17

sin A - Cos A

15/17 - 8/17

7/17 :- ANSWER

Similar questions