if tan A=√2-1 show that sin A cos A=√2/4
Answers
Answered by
0
tanA=[2]^(1/2)-1
sinA/cosA=[2]^(1/2)-1
multiply numerator and denominator by cosA
sinAcosA/cos^2A=[2]^(1/2)-1
sinAcosAsec^2A=[2]^(1/2)-1
sinAcosA(1+tan^2A)=[2]^(1/2)-1
sinAcosA(4-2[2]^(1/2))=[2]^(1/2)-1
sinAcosA=[2]^(1/2)-1/4-2[2]^(/2)
rationalise,
sinAcosA={[2]^(1/2)-1}{4+2[2]^(1/2)}/8
=2[2]^(1/2)/8=[2]^(1/2)/4
we can also prove it using a right angled triangle
reetikachahar:
but your answer is wrong
Similar questions
Math,
6 months ago
English,
6 months ago
English,
1 year ago
English,
1 year ago
Computer Science,
1 year ago