If tan A =√2-1 , then show that cot A =√2+1?
Answers
Answered by
0
Answer:
Step-by-step explanation:
tanA=√2-1
or, tanA=(√2-1)(√2+1)/(√2+1)
or, tanA=(2-1)/(√2-1)
or, tanA=1/√2-1
∴, tanA+1/tanA=1/√2-1+√2-1
or, (tan²A+1)/tanA=[1+(√2-1)²]/(√2-1)
or, sec²A/tanA=(1+2-2√2+1)/(√2-1)
or, (1/cos²A)/(sinA/cosA)=(4-2√2)/(√2-1)
or, 1/sinAcosA=(4-2√2)(√2+1)/(√2-1)(√2+1)
or, 1/sinAcosA=(4√2-4+4-2√2)/(2-1)
or, 1/sinAcosA=2√2
or, sinAcosA=1/2√2
or, sinAcosA=√2/2√2.√2
or, sinAcosA=√2/4 (Proved)
Similar questions
Chemistry,
5 months ago
Math,
5 months ago
Math,
10 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago