If tan A = 2/3 , find the value of sin 2A and cos 2A
Answers
Answered by
7
As we know,
Sin2Φ = ( 2 tan²Φ ) / √( 1 + tan²Φ)
And,
Cos 2Φ = ( 1 - tan²Φ )/ ( 1 + tan²Φ)
therefor,
we have given tanA = 2/3
Sin2A = ( 2 tan²A ) / √( 1 + tan²A)
=)) ( 2 ( tan A) ²) / √(1 + (tanA)²)
=)) ( 2 (2/3)²) / √(1 + (2/3)² )
=)) ( 2 x ( 4 / 9 )) / √( 1 + (4/9))
=)) ( 8 / 9 ) / √ ( (9 + 4) / 9 )
=)) ( 8/ 9) / ( √13 / 3 )
=)) ( 8 / 9 ) x ( 3 / √13 )
=)) ( 8 / 3√13 )
Sin2A = ( 8 / 3√13 )
____________________________
Now,
Cos2A = ( 1 - tan²A )/ ( 1 + tan²A)
=)) ( 1 - (tan A)² ) / ( 1 +( tanA)²)
=)) ( 1 - (2/3)² ) / (1 + ( 2/3)²)
=)) ( 1 - (4 / 9 ) ) / ( 1 + (4 /9 ))
=)) (( 9 - 4) / 9 ) / (( 9 + 4 ) / 9 )
=)) ( 5 / 9 ) / ( 13 / 9 )
=)) ( 5 / 9 ) x ( 9 / 13 )
=)) 5 / 13
Cos 2A = 5/13
Similar questions