Math, asked by soumali614, 8 months ago

If tan A=2/3,prove that sin²A+cos²A=1

Answers

Answered by Anonymous
2

Solution:-

Given;

\rm \implies \tan A=\dfrac{2}{3}

To prove

\rm \implies \sin^{2}  A+\cos^{2} A=1

Now take

\rm \implies \tan A=\dfrac{2}{3}=\dfrac{p}{b}

So

\rm p= 2 , b=3\: and\: h= x

Using pythagoras theorem

\rm \implies h^{2} = p^{2} +b^{2} \\ \implies h^{2}=2^{2} + 3^{2}

\rm \implies h=\sqrt{13}

\rm p= 2 , b=3\: and\: h= \sqrt{13}

Now

\rm \implies \sin A = \dfrac{2}{\sqrt{13} } =\dfrac{p}{h} \\ \rm \implies \cos A = \dfrac{3}{\sqrt{13} }=\dfrac{b}{h}

put the value on given equation

\rm \implies \sin^{2}  A+\cos^{2} A

\rm \implies \bigg(\dfrac{2}{\sqrt{13} } \bigg)^{2} +\bigg(\dfrac{3}{\sqrt{13} } \bigg)^{2} \\ \rm \implies \dfrac{4}{13} +\dfrac{9}{13}

\implies\dfrac{13}{13} =1

Hence proved

Similar questions