Math, asked by tejulgamerr3, 9 months ago

If tan A  =  2/3, then find all the other trigonometric ratios. ​

Answers

Answered by Anonymous
115

Solution :

tan A = opposite side / adjacent side = 2 / 3

By Pythagorean Theorem,

AC2 = AB2 + BC2

AC2 = 32 + 22

AC2 = 9 + 4

AC2 = 13

AC = √13

Then,

sin A = opposite side / hypotenuse = BC/ AC = 2/√13

cos A = adjacent side / hypotenuse = AB/AC = 3/√13

csc A = 1 / sin A = √13/2

sec A = 1 / cos A = √13/3

cot A = 1 / tan A = 3/2

Attachments:
Answered by ushmagaur
2

Answer:

All the other trigonometric ratios are:

sinA=\frac{2}{\sqrt{13} }, cosA=\frac{3}{\sqrt{13} }, secA=\frac{\sqrt{13} }{3}, cosecA=\frac{\sqrt{13} }{2} and cotA=\frac{3 }{2}.

Step-by-step explanation:

Step 1 of 6

Given: tanA=\frac{2}{3}

We know that,

tanA=\frac{perpendicular\ side\ to\ angle\ A}{base \ side\ of\ angle\ A}

tanA=\frac{BC}{AB}

So, in the figure,

ΔABC is a right angled triangle in which AB=3 units and BC=2 units.

Then by Pythagoras theorem,

AC=\sqrt{AB^2+BC^2}

      =\sqrt{3^2+2^2}

      =\sqrt{9+4}

AC=\sqrt{13} units

Step 2 of 6

Computing the trigonometric ratio of sinA.

sin A=\frac{BC}{AC}

sinA=\frac{2}{\sqrt{13} }

Step 3 of 6

Computing the trigonometric ratio of cosA.

cos A=\frac{AB}{AC}

cosA=\frac{3}{\sqrt{13} }

Step 4 of 6

Computing the trigonometric ratio of secA.

sec A=\frac{1}{cosA}

        =\frac{1}{3/\sqrt{13} }

secA=\frac{\sqrt{13} }{3}

Step 5 of 6

Computing the trigonometric ratio of cosecA.

cosec A=\frac{1}{sinA}

        =\frac{1}{2/\sqrt{13} }

cosecA=\frac{\sqrt{13} }{2}

Step 6 of 6

Computing the trigonometric ratio of cotA.

cot A=\frac{1}{tanA}

        =\frac{1}{2/3 }

cotA=\frac{3 }{2}

Final answer: all the other trigonometric ratios are:

sinA=\frac{2}{\sqrt{13} }, cosA=\frac{3}{\sqrt{13} }, secA=\frac{\sqrt{13} }{3}, cosecA=\frac{\sqrt{13} }{2} and cotA=\frac{3 }{2}.

#SPJ2

Attachments:
Similar questions