if tan a=2 and a belongs to (π,3π/2) then the value of the expression cos a/sin^3a+cos^3a is equal to
Answers
Answered by
5
Step-by-step explanation:
TanA=2
so by Pythagoras theorem
SinA=2/√5
SinA=2/√5CosA=1/√5
So in the question
CosA/sin³A+cos³A. from[a³+b³=(a+b)(a²-2ab+b²)]
=cosA/(sinA+CosA) (sin²A+cosA²-2sinACosA)
=CosA/(sinA+cosA)(1-2sinAcosA)
now by substituting the values
(1/√5)
[(2/√5)+(1/√5)][1-2*(2/√5)*(1/√5)
1
(√5)(3/√5) [(5-4)/5]
1
3* 1/5
5.
3
Thank you
Regards
Similar questions