Math, asked by khanatif2982, 11 months ago

If tan A = 2 and tan B =3 . Evaluate ( cos A cosB - sinA sinB)^2

Answers

Answered by rishu6845
10

Answer:

 \dfrac{1}{2}

Step-by-step explanation:

Given---->

tan \alpha  = 2 \: and \: tan \beta  = 3

To find---->

value \: of {(cos \alpha  \: cos \beta  -  \: sin \alpha  \: sin \beta )}^{2}

Concept used ---->

1)

tan( \alpha  +  \beta ) =  \dfrac{tan \alpha  + tan \beta }{1 - tan \alpha  \: tan \beta }

2)

cos( \alpha  \:  +  \beta ) = cos \alpha  \: cos \beta  - sin \alpha  \: sin \beta

3)

 {sec}^{2}  \alpha  = 1 +  {tan}^{2} \alpha

Solution---->

 \tan( \alpha  +  \beta ) =  \dfrac{tan \alpha  + tan \beta }{1 - tan \alpha  \: tan \beta }

 \tan( \alpha  +  \beta )  \:  =  \dfrac{2 + 3}{1 - (2) \: (3)}

 \tan( \alpha  +  \beta ) \:  =  \dfrac{5}{1 - 6}

 \tan( \alpha  +  \beta )  \:  =  \dfrac{5}{ - 5}

 \tan( \alpha  +  \beta )  =  - 1

now

 {(cos \alpha cos \beta  - sin \alpha sin \beta )}^{2} =  {(cos( \alpha  +  \beta ))}^{2}

 =  {cos}^{2}( \alpha  +  \beta )

 =  \dfrac{1}{ {sec}^{2}( \alpha  +  \beta ) }

 =  \dfrac{1}{1 +  {tan}^{2}( \alpha  +  \beta ) }

 =  \dfrac{1}{1 +  {( - 1)}^{2} }

 =  \dfrac{1}{1 + 1}

 =  \dfrac{1}{2}

Similar questions