Math, asked by Yuvraj7693, 5 months ago

If tan A = 24, find the value of sin A + cos A​

Answers

Answered by soniayushi2004
1

Answer:

sinA+cosA

tanA=sinA/cosA

as, tanA=24

so, sinA/cosA=24

sin=cos24

cos=sin/24

substitute, sinA+cosA

cos24+sin/24=0

24/24(cos+sin)=0

cos+sin=1

1*1=1

sinA+cosA=1

ans=1

Answered by BrainlyPopularman
23

GIVEN :–

 \\ \bf \implies \tan(A) = 24 \\

TO FIND :–

• Value  of  sin(A) + cos(A) = ?

SOLUTION :–

 \\ \bf \implies \tan(A) = 24 \\

• We  know  that  –

 \\ \bf \implies \tan(A) = \dfrac{L}{A} \\

 \\ \bf \implies \tan(A) = \dfrac{L}{A} =  \dfrac{24}{1}  \\

• So that  –

 \\ \bf \implies L = 24 \:, \:  A = 1\\

• We also that –

 \\ \bf \implies  {K}^{2} = L^{2} + A ^{2} \\

 \\ \bf \implies  {K}^{2} = (24)^{2} + (1)^{2} \\

 \\ \bf \implies K =  \sqrt{576+1} \\

 \\ \bf \implies K =  \sqrt{577} \\

• We also know that  –

 \\ \bf \implies \sin(A) = \dfrac{L}{K} \\

• And –

 \\ \bf \implies \cos(A) = \dfrac{A}{K} \\

• Now let's find –

 \\ \bf \:   \: =  \:  \: \sin(A)+ \cos(A)\\

 \\ \bf \:   \: =  \:  \:\dfrac{L}{K}+ \dfrac{A}{K}\\

 \\ \bf \:   \: =  \:  \:\dfrac{L+A}{K}\\

• Now put the values –

 \\ \bf \:   \: =  \:  \:\dfrac{24+1}{\sqrt{577}}\\

 \\ \bf \:   \: =  \:  \:\dfrac{25}{\sqrt{577}}\\

• Hence –

 \\ \large \implies{ \boxed{ \bf\sin(A) + \cos(A)=\dfrac{25}{\sqrt{577}}}}\\

Similar questions