Math, asked by Anmoljain13, 3 months ago

If tan A = 3/2, then find the value of cos A​

Answers

Answered by ADVIK143
3

Answer:

 \frac{2}{ \sqrt{13} }

Step-by-step explanation:

 \tan(a)  =  \frac{3}{2} \\  \frac{p}{b} =  \frac{3}{2}  \: \:  ( \frac{perpendicular}{base} )  \\ let \: p \: be \: 3x \: and \: b \: be \: 2x \\ by \: pythagoras \: theorem \\  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\ h =  \sqrt{ {(3x)}^{2} }  +  {(2x)}^{2}  \\ h =  \sqrt{9 {x}^{2} }  + 4 {x}^{2}  \\ h =  \sqrt{13 {x}^{2} }  \\ h = x \sqrt{13}  \\  \\ now \:  \cos(a)  =  \frac{b}{h} \\  =  \frac{2x}{x \sqrt{13} }   \\  =  \frac{2}{ \sqrt{13}}

Hope it helps!!

Similar questions