If tan A=3/4 , sin=5/13 , A and B are acute angles ,find sin (A+B) and cos(A-B)
Answers
Answer:
sinA =3/5 and sinB=5/13 where A and B are acute angles.
SinA= 3/5 then, Cos A= 4/5. ( By Pythagoras theorem)
SinB = 5/13. Then ,Cos B= 12/13.(By Pythagoras theorem)
Cos(A+B)= CosA.CosB – SinA.SinB
Then put the value
Cos(A+B)= 4/5×12/13 – 3/5×5/13
Cos(A+B) = 48/65 – 15/65
Cos(A+B)=33/65. ( Answer).
I hope u understand please comment and upvote and support.
in above attachment is Answer......
I hope it will helpful......
in right ∆ABC, right angle at C...
Given:-
SinQ= P/h=AC/AB
SinB=5/13
To find side BC we have to apply Pythagoras theorem:-
i.e,
h²= p²+b²
b²=h²-p²
b²=(13)²-(5)²
b²=169-25
b²= 144
b=√144=12 units.
so, we get:-
Bc=12
then,CosB= 12/13
in other triangle..
∆ABC,right angle at C...
Given:-
tanA=3/4= BC/AC
similarly we have to find side AB
by applying Pythagoras theorem:-
h²= p²+b²
h²=3²+4²
h²= 9+16
AB=√25=5unit
So, sinA=3/5 and cosA=4/5
Now....
sin(A+B)= sinA cosB + cosA sinB
sin(A+B)= (3/5x12/13)+(4/5x5/13)
sin(A+B)=36/65+20/65
sin(A+B)=56/65
And..
Cos(A-B)=cosA cosB - sinA sinB
Cos(A-B)=(4/5•12/13)-(3/5•5/13)
Cos(A-B)=48/65-15/65
Cos(A-B)=33/65