Math, asked by anonymous7493, 9 months ago

if tan a=√3 and tan b=1/√3 0 less than a, b less than 90 find the value of cot (a+b)

Answers

Answered by Anonymous
17

{\underline{\underline{\bold{Given:-}}}}

  • \sf{tan\:a=\sqrt{3}}
  • \sf{tan\:b=\dfrac{1}{\sqrt{3}}}
  • 0 < a,b < 90

{\underline{\underline{\bold{To\: find:-}}}}

  • Value of cot (a+b).

{\underline{\underline{\bold{Solution:-}}}}

{\sf{\purple{tan\:a=\sqrt{3}}}}

\to\sf{tan\:a=tan\:60\degree}

\to\sf{a=60\degree}

{\sf{\purple{tan\:b=\dfrac{1}{\sqrt{3}}}}}

\to\sf{tan\:b=tan\:30\degree}

\to\sf{b=30\degree}

Now, find the value of cot(a+b) :-

\to\sf{cot(a+b)}

  • Put a = 60° and b = 30°

\to\sf{cot(60+30)}

\to\sf{cot\:90\degree}

\to\sf{0\:[Answer]}

________________

More information :-

Some trigonometric values :-

  • sin30° = 1/2
  • sin45° = 1/√2
  • sin60° = √3/2
  • cos30° = √3/2
  • cos45° = 1/√2
  • cos60° = 1/2
  • tan30° = 1/√3
  • tan45° = 1
  • tan60° = √3

Some trigonometric identities :-

• sin²A + cos²A = 1

• 1 + tan²A = sec²A

• 1 + cot²A = cosec²A

• cos²A - sin²A = cos2A


BrainlyRaaz: Awesome Dii ❤️
Answered by ThakurRajSingh24
29

{\red{\underline{\boxed{\sf{QUESTION :}}}}}

if tan A=√3 and tan B=1/√3 0 less than A, B less than 90°, find the value of cot (a+b) .

{\blue{\underline{\boxed{\sf{SOLUTION :}}}}}

\longrightarrowTan A = √3 = Tan 60°

\longrightarrow {\boxed{\blue{\sf{ A = 60°}}}}

\longrightarrowTan B = 1/√3 = Tan 30°

\longrightarrow {\boxed{\purple{\sf{B = 30°}}}}

\longrightarrowCot(A+B) = Cot(60+30)°

\longrightarrow {\red{\boxed{\underline{\sf{Cot90° = 0 .}}}}}

Hence, the value of cot(A+B) is 0 .

{\green{\underline{\boxed{\sf{Some \: Trigonometry \: Identities :}}}}}

• Sin²θ + Cos²θ = 1

• 1 + Tan²θ = Sec²θ

• 1 + Cot²θ = Cosec²θ .


BrainlyRaaz: Perfect bhai
Similar questions