Math, asked by vidhidave2605, 9 months ago

If tan A=√3, find the other trigonometric ratio of angle A.

Answers

Answered by MANTUMEHER
3

Step-by-step explanation:

if

 \tan(a)  =  \sqrt{3}  \\ then \: the \: a \:  =  \:  {60}^{0}  \\  \sin(a)  =  \frac{ \sqrt{3} }{2}  \\  \cos(a ) =  \frac{1}{2}  \\  \cot(a)  =  \frac{1}{ \sqrt{3} }  \\  \sec(a)  = 2 \\  \csc(a)  =  \frac{2}{ \sqrt{3} }

Answered by sourya1794
6

\bf{\underline{Solution}}:-

\rm\:tanA=\dfrac{p}{b}=\dfrac{BC}{AB}=\dfrac{\sqrt{3}}{1}

Let BC be √3 k

and AB be k

Now,

In right ∆ ABC

\rm\:AC=\sqrt{{(AB)}^{2}+{(BC)}^{2}}

\rm\longrightarrow\:AC=\sqrt{{(k)}^{2}+{(\sqrt{3})^2}}

\rm\longrightarrow\:AC=\sqrt{{k}^{2}+{3k}^{2}}

\rm\longrightarrow\:AC=\sqrt{{4k}^{2}}

\rm\longrightarrow\:AC=2k

Now,

\rm\therefore\:sinA=\dfrac{p}{h}=\dfrac{BC}{AC}

\rm\longrightarrow\:sinA=\dfrac{\sqrt{3}\cancel{k}}{2\cancel{k}}

\rm\longrightarrow\:sinA=\dfrac{\sqrt{3}}{2}

\rm\therefore\:cosA=\dfrac{b}{h}=\dfrac{AB}{AC}

\rm\longrightarrow\:cosA=\dfrac{\cancel{k}}{2\cancel{k}}

\rm\longrightarrow\:cosA=\dfrac{1}{2}

\rm\therefore\:tanA=\dfrac{p}{b}=\dfrac{BC}{AB}

\rm\longrightarrow\:tanA=\dfrac{\sqrt{3}\cancel{k}}{\cancel{k}}

\rm\longrightarrow\:tanA={\sqrt{3}}

\rm\therefore\:cosecA=\dfrac{h}{p}=\dfrac{AC}{BC}

\rm\longrightarrow\:cosecA=\dfrac{2k}{\sqrt{3}k}

\rm\longrightarrow\:cosecA=\dfrac{2}{\sqrt{3}}

\rm\therefore\:secA=\dfrac{h}{b}=\dfrac{AC}{AB}

\rm\longrightarrow\:secA=\dfrac{2k}{k}

\rm\longrightarrow\:secA=2

\rm\therefore\:cotA=\dfrac{b}{p}=\dfrac{AB}{BC}

\rm\longrightarrow\:cotA=\dfrac{k}{\sqrt{3}k}

\rm\longrightarrow\:cotA=\dfrac{1}{\sqrt{3}}

Attachments:
Similar questions