If tan A =4/3 then find the values of the following:
i) sin 2A
ii) cos 2A
iii) tan 2A
Answers
Answer:
1) sin2A = 2tanx/1+tan^2x
[2×4/3] / [(1+(4/3)^2]
(8/3)/[25/9]
sin 2A = 24/25
2) tan a = 4/3.
tan 2a = 2 tan a/(1 - tan^2 a)
= [2*4/3]/[1 - (4/3)^2]
= (8/3)/[ 1- 16/9]
= (8/3)/[-7/9]
= (8/3)*(-9/7)
tan 2a= (-)24/7
3) cos2A= 1-tan^2A/1+tan^2A
= [2×4/3]\[1-(4/3)^2]
=(-7/9)/(25/9)
= (-)7/25
Values are as follows - sin 2A is 24/25, cos 2A is -7/25 and tan 2A is -24/7.
Given - Tan A
Find - sin 2A, cos 2A and tan 2A
Solution - As we know, tan = perpendicular/base
So, the perpendicular and base will be 4 and 3. Finding Hypotenuse using Pythagoras theorem.
sin = perpendicular/hypotenuse.
cos = base/hypotenuse
tan A =
Now, sin 2A = 2 sinA cos A
cos 2A = 2 cos² A - 1
tan 2A = 2 tan A/(1- tan² A)
Finding sin 2A
(i) sin 2A =
(i) sin 2A =
(ii) cos 2A =
(ii) cos 2A =
(ii) cos 2A =
(ii) cos 2A =
(ii) cos 2A =
(iii) tan 2A =
tan 2A =
tan 2A =
tan 2A =
tan 2A =
tan 2A =
tan 2A = -24/7
Hence, sin 2A is 24/25, cos 2A is -7/25 and tan 2A is -24/7.
#spj3