Math, asked by ryalapetaanandrao, 6 months ago



If tan A =4/3 then find the values of the following:
i) sin 2A
ii) cos 2A
iii) tan 2A​

Answers

Answered by dixitankit039
22

Answer:

1) sin2A = 2tanx/1+tan^2x

[2×4/3] / [(1+(4/3)^2]

(8/3)/[25/9]

sin 2A = 24/25

2) tan a = 4/3.

tan 2a = 2 tan a/(1 - tan^2 a)

= [2*4/3]/[1 - (4/3)^2]

= (8/3)/[ 1- 16/9]

= (8/3)/[-7/9]

= (8/3)*(-9/7)

tan 2a= (-)24/7

3) cos2A= 1-tan^2A/1+tan^2A

= [2×4/3]\[1-(4/3)^2]

=(-7/9)/(25/9)

= (-)7/25

Answered by PoojaBurra
2

Values are as follows - sin 2A is 24/25, cos 2A is -7/25 and tan 2A is -24/7.

Given - Tan A

Find - sin 2A, cos 2A and tan 2A

Solution - As we know, tan = perpendicular/base

So, the perpendicular and base will be 4 and 3. Finding Hypotenuse using Pythagoras theorem.

 {Hypotenuse}^{2}  =  {4}^{2}  +  {3}^{2}

 {Hypotenuse}^{2}  = 16  + 9

 {Hypotenuse}^{2}  = 25

Hypotenuse =  \sqrt{25}

Hypotenuse = 5

sin = perpendicular/hypotenuse.

 \sin( A )  =  \frac{4}{5}

cos = base/hypotenuse

 \cos( A) =  \frac{3}{5}

tan A =  \frac{4}{3}

Now, sin 2A = 2 sinA cos A

cos 2A = 2 cos² A - 1

tan 2A = 2 tan A/(1- tan² A)

Finding sin 2A

(i) sin 2A = 2 \times  \frac{4}{5}  \times  \frac{3}{5}

(i) sin 2A =  \frac{24}{25}

(ii) cos 2A = 2 \times(  { \frac{3}{5}) }^{2}  - 1

(ii) cos 2A = 2 \times  \frac{9}{25}  - 1

(ii) cos 2A =  \frac{18}{25}  - 1

(ii) cos 2A =  \frac{18 - 25}{25}

(ii) cos 2A =  \frac{ - 7}{25}

(iii) tan 2A =  \frac{2 \times  \frac{4}{3} }{(1 -   {( \frac{4}{3}) }^{2}  }

tan 2A =  \frac{ \frac{8}{3} }{(1 -  \frac{16}{9}) }

tan 2A =  \frac{ \frac{8}{3} }{( \frac{9 - 16}{9}) }

tan 2A =  \frac{ \frac{8}{3} }{( \frac{ - 7}{9}) }

tan 2A =  -  \frac{8 \times 9}{7  \times 3}

tan 2A =  -  \frac{72}{21}

tan 2A = -24/7

Hence, sin 2A is 24/25, cos 2A is -7/25 and tan 2A is -24/7.

#spj3

Similar questions