if tan A =4, then find sin A and Cos A
Answers
Answered by
8
Answer:
tanA = 4/1
=> using Pythagoras law => c² = 4²+1² = 16+1 = 17
=> c =√17
=> sinA = 4/√17 , cosA = 1/√17
Answered by
4
Step-by-step explanation:
if tan A = 4
we know that, tan A= Sin A/Cos A
Tan A = perpendicular/base
tan A = 4k/1k
using Pythagoras theorem
hypotenuse = √per.²+base²
hypo. = √(4k)²+(1k)²
hypo. = √16k²+1k²
hypo = √17k²
hypo= k√17
Sin A = per/hypo
sin a= 4k/k√17
sin A = 4/√17
similarly
cos A = base/hypo
cos a = k/k√17
cos a = 1/√17
Similar questions