Math, asked by Hetanic, 1 year ago

If tan A= 5/12 , find the other trigonometric ratios of the angle A.

Answers

Answered by ihrishi
10

Step-by-step explanation:

tan \: A \:  =  \frac{5}{12}  =  \frac{perpendicular}{base}  \\  {hyp}^{2}   = \:  {perp}^{2}  +  {base}^{2}  \\  =  {5}^{2}  +  {12}^{2}  = 25 + 144 = 169 \\ hyp = 13 \\ now \\ sin \: A \:  =  \frac{perp}{hyp}  =  \frac{5}{13}  \\ cos \: A \:  =  \frac{base}{hyp}  =  \frac{12}{13}  \\ tan \: A \:  =  \frac{perp}{base}  =  \frac{5}{12}  \\  \\ cot \: A \:  =  \frac{base}{perp}  =  \frac{12}{5}  \\ sec \: A \:  =  \frac{hyp}{base}  =  \frac{13}{12}  \\ cosec \: A \:  =  \frac{hyp}{perp}  =  \frac{13}{5}

Mark me as brainliest

Similar questions