If tan A = 5/13 , π < A < 3π/2 and cos B = 3/5 , 3π/2 < B < 2π then cos (A - B) ?
Answers
Answer:
Given : sin A= -5/13 π<A<3π/2
cos B=3/5 3π/2< B<2π
To Find : Sin ( A + B)
Solution:
Sin ( A + B) = SinA CosB + cosA SinB
sin A= -5/13 π<A<3π/2
sin²A + cos²A = 1
=> cosA = - 12/13 as π<A<3π/2 hence cos is -ve
cos B=3/5 3π/2< B<2π
=> sin B = - 4/5 as 3π/2< B<2π hence sin is -ve
Sin ( A + B) = SinA CosB + cosA SinB
=> Sin ( A + B) = (-5/13) (3/5) + (-12/13) ( -4/5)
=> Sin ( A + B) = -3/13 + 48/65
=> Sin ( A + B) = 33/65
=> Sin ( A + B) = 0.5077
""" ❤️ Answer ❤️ """
Given, sin A = -513
We know that,
cos2A = 1 – sin2A = 1-(-513)2
= 1-25169
= 144169
∴ cos A = ±1213
Since,
A
π<A<3π2
∴ ‘A’ lies in the 3rd quadrant
∴ cos A < 0
∴ cos A = -1213
Also, cos B = 35
∴ sin2B = 1 – cos2B = 1-(35)2
= 1-925
= 1625
∴ sin B = ±45
Since,
B
3π2<B<2π
∴ ‘B’ lies in the 4th quadrant.
∴ sin B < 0
∴ sin B = -45
tan A =
A
A
sinAcosA=(-513)(-1213)=512
tan B =
B
B
sinBcosB=(-45)(35)=-43
tan (A + B) =
AB
AB
tanA+tanB1-tanAtanB
=
512-431-(512)(-43)
= (-3336)(5636)
= -3356