Math, asked by asukakazama24, 1 year ago

if tan A = a tan B and sin A = b sin B prove that cos^2 A = b^2 - 1/ a^2 -1

Answers

Answered by Divyanshusrivastava
8
》tanA=a(tanB)
》a=tanA/tanB

》a^2=tan^2A/tan^2B .......(i)

And;

》b=sinA/sinB
》b^2=sin^2A/sin^2B ......(ii)


RHS=b^2-1/a^2-1
=sin^2A-sin^2B/sin^2B×tan^2A-tan^2B/tan^2B
=sin^2A-sin^2B/sin^2B×(sin^2A×cos^2B- sin^2B×cos^2A)/(cos^2A×cos^2B)×(cos^2B /sin^2B)
= cos^2A

HENCE PROVED

Answered by rinayjainsl
0

Answer:

Proof of the below relation is explained below

cos {}^{2} A  =  \frac{b {}^{2} - 1 }{a {}^{2}  - 1}

Step-by-step explanation:

Given trigonometric relations are

tan A = a tan B  \\ sin A = b sin B

From these two relations,we have

 \frac{tanA}{tanB}  = a  =  >  \frac{sinA}{sinB}   = a \frac{cosA}{cosB}  \\  \\ \frac{sinA}{sinB}  = b =  >  \frac{cosA}{cosB}  =  \frac{b}{a}

Using trigonometric identity we can write that

sin {}^{2} B + cos {}^{2} B = 1

From our given relations we have

sinB =  \frac{sinA}{b}  \\  cosB =  \frac{a}{b} cosA

Substituting these in the above mentioned identity we get,

( \frac{sinA}{b} ) {}^{2}  + ( \frac{a}{b}cos A) {}^{2}  = 1 \\  =  > sin {}^{2} A + a {}^{2} cos {}^{2} A = b {}^{2}  \\  =  > (1 - cos {}^{2} A ) + a {}^{2} cos {}^{2} A  = b {}^{2}  \\  =  > cos {}^{2} A (a {}^{2}  - 1) = b {}^{2}  - 1 \\  =  > cos {}^{2} A  =  \frac{b {}^{2} - 1 }{a {}^{2}  - 1}

Therefore,it is proved that

cos {}^{2} A  =  \frac{b {}^{2} - 1 }{a {}^{2}  - 1}

#SPJ2

Similar questions