Math, asked by ishan0103, 7 months ago

If tan A =a tanB and sinA=b sinB prove that
cos²A=b^2-1/a^2-1

answer this question please​

Attachments:

Answers

Answered by MaIeficent
2

Step-by-step explanation:

Given:-

  • tanA = a tanB

  • sinA = b sinB

To prove:-

  • \sf {cos}^{2} a =  \dfrac{ {b}^{2} - 1 }{ {a}^{2}  - 1}

Proof:-

\sf \bull \: tanA = a \: tanB

\sf \dashrightarrow tanB =   \dfrac{1}{ a} \:tanA

\sf \dashrightarrow \dfrac{1}{tanB} =   \dfrac{a}{ tanA}

\sf \dashrightarrow cotB= \dfrac{a}{ tanA}

\sf \bull \: sinA = b \: sinB

\sf \dashrightarrow sinB =   \dfrac{1}{ b} \:sinA

\sf \dashrightarrow \dfrac{1}{sinB} =   \dfrac{b}{ sinA}

\sf \dashrightarrow coecB= \dfrac{b}{ sinA}

\sf   As,   {cosec}^{2}B  -  {cot}^{2}B = 1

\sf  \longrightarrow   \bigg(\dfrac{b}{ sinA}\bigg)^{2}- \bigg(\dfrac{a}{ tanA}\bigg)^{2} = 1

\sf  \longrightarrow   \dfrac{ {b}^{2} }{ sin ^{2} A}- \dfrac{ {a}^{2} }{ tan^{2} A} = 1

\sf  \longrightarrow   \dfrac{ {b}^{2} }{ sin ^{2} A}- \dfrac{ {a}^{2} }{  \dfrac{sin^{2} A}{cos^{2} A} } = 1

\sf  \longrightarrow   \dfrac{ {b}^{2} }{ sin ^{2} A}- \dfrac{ {a}^{2} cos ^{2}A}{sin^{2}A }= 1

\sf  \longrightarrow    \dfrac{  {b}^{2}  - {a}^{2} cos ^{2}A}{sin^{2}A }= 1

\sf  \longrightarrow {b}^{2} - {a}^{2} cos ^{2}A=  {sin}^{2} A

\sf  \longrightarrow {b}^{2} - {a}^{2} cos ^{2}A=  1 - {cos}^{2} A

\sf  \longrightarrow  {b}^{2} - 1 = cos ^{2}A( {a}^{2} -1)

\sf  \longrightarrow   \dfrac{ {b}^{2}  - 1}{ {a}^{2}  - 1} = cos ^{2}A

 \underline{ \boxed{\sf  \leadsto  cos ^{2}A =  \dfrac{ {b}^{2}  - 1}{ {a}^{2}  - 1}  }}

\sf \underline{Hence \: Proved}

Similar questions