If tan A and tan B are the roots of x^2 – ax + b = 0, then the value of cos^2(A + B) is :-
1. a^2 / (a^2 + (1-b)^2
2.a^2 / (a^2 + (1+b)^2
3. 1+b / (a^2 + (1-b)^2
4. a^2 / (a+b)^2
Answers
EXPLANATION.
tan(A) and tan(B) are the roots of the equation.
⇒ x² - ax + b = 0.
As we know that,
Sum of the zeroes of the quadratic polynomial.
⇒ α + β = - b/a.
⇒ tan(A) + tan(B) = -(-a)/1 = a.
⇒ tan(A) + tan(B) = a. - - - - - (1).
Products of the zeroes of the quadratic polynomial.
⇒ αβ = c/a.
⇒ tan(A) x tan(B) = b. - - - - - (2).
As we know that,
Formula of :
⇒ tan(A + B) = [tan(A) + tan(B)]/[1 - tan(A) x tan(B)].
⇒ tan(A + B) = [a]/[1 - b].
Squaring on both sides of the equation, we get.
⇒ tan²(A + B) = (a)²/1 - b)².
As we know that,
Formula of :
⇒ sec²x = 1 + tan²x.
Put the values in the equation, we get.
⇒ sec²(A + B) = 1 + (a)²/(1 - b)².
⇒ sec²(A + B) = [(1 - b)² + (a)²/(1 - b)²].
⇒ 1/cos²(A + B) = [(1 - b)² + (a)²/(1 - b)²].
⇒ cos²(A + B) = [(1 - b)²/(1 - b)² + (a)²].
⠀⠀⠀⠀⠀★ G I V E N ⠀P O L Y N O M I A L :⠀ x² - ax + b = 0
⠀▪︎⠀By Comparing Given Polynomial with Standard form of Quadratic Equation ( i.e. ax² + bx + c = 0 ) we get —
- a = 1 ,
- b = – a &
- c = b
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀
- Sec² x = 1 + Tan² x