Math, asked by trigunathaker2014, 9 months ago

If tan (A – B) = 1/

3

and tan (A + B) = √3 , then the value of A and B, respectively are​

Answers

Answered by shadowsabers03
3

Given,

\longrightarrow \tan(A-B)=\dfrac{1}{3}

\longrightarrow A-B=\tan^{-1}\left(\dfrac{1}{3}\right)

And,

\longrightarrow \tan(A+B)=\sqrt3

\longrightarrow A+B=\tan^{-1}\sqrt3

Then value of A is,

\longrightarrow A=\dfrac{\tan^{-1}\sqrt3+\tan^{-1}\left(\dfrac{1}{3}\right)}{2}

We know that,

  • \tan^{-1}a\pm\tan^{-1}b=\tan^{-1}\left(\dfrac{a\pm b}{1\mp ab}\right)

Then,

\longrightarrow A=\dfrac{1}{2}\tan^{-1}\left(\dfrac{\sqrt3+\frac{1}{3}}{1-\sqrt3\times\frac{1}{3}}\right)

\longrightarrow\underline{\underline{A=\dfrac{1}{2}\tan^{-1}\left(\dfrac{3\sqrt3+1}{3-\sqrt3}\right)}}

And, value of B is,

\longrightarrow B=\dfrac{\tan^{-1}\sqrt3-\tan^{-1}\left(\dfrac{1}{3}\right)}{2}

\longrightarrow B=\dfrac{1}{2}\tan^{-1}\left(\dfrac{\sqrt3-\frac{1}{3}}{1+\sqrt3\times\frac{1}{3}}\right)

\longrightarrow\underline{\underline{B=\dfrac{1}{2}\tan^{-1}\left(\dfrac{3\sqrt3-1}{3+\sqrt3}\right)}}

Similar questions