Math, asked by mercyadeyemi00, 9 months ago

If tan(A+B) =1/7 and tanA=1/3, find tanB

Answers

Answered by TheLostMonk
1

Answer:

-2/11

Step-by-step explanation:

tan(A+B) = (tanA + tanB)/(1- tanAtanB)

1/7 = (1/3 + tanB)/(1 - 1/3* tanB)

1/7 = (1+ 3tanB)/(3 - tanB)

22tanB = -4 => tanB = -2/11

Answered by BrainlyPopularman
14

GIVEN :

 \\   \rm \:  \: { \huge{.}} \:   \: \tan(A + B )  =  \dfrac{1}{7}  \\

 \\   \rm \:  \: { \huge{.}} \:   \: \tan(A)  =  \dfrac{1}{3}  \\

TO FIND :

 \\   \rm \:  \: { \huge{.}} \:   \: \tan( B )  =  ?  \\

SOLUTION :

• We know that –

 \\    \:  \longrightarrow\:   \large { \boxed{  \rm{ \tan(A + B )  =  \dfrac{ \tan(A ) +  \tan(B)  }{1 -  \tan(A )  \tan( B) }}}}  \\

• Now put the values –

 \\    \:  \implies\:   \:{  \rm{  \dfrac{1}{7}  =  \dfrac{  \dfrac{1}{3}  +  \tan(B)  }{1 -  \left (  \dfrac{1}{3} \right ) \tan( B) }}}  \\

 \\    \:  \implies\:   \:{  \rm{  \dfrac{1}{7}  =  \dfrac{ 1+ 3 \tan(B)  }{3 -   \tan( B) }}}  \\

 \\    \:  \implies\:   \:{  \rm{ 3 -  \tan(B) = 7 + 21 \tan(B)   }}  \\

 \\    \:  \implies\:   \:{  \rm{ 3 -  7 =  22 \tan(B)   }}  \\

 \\    \:  \implies\:   \:{  \rm{  - 4 =  22 \tan(B)   }}  \\

 \\    \:  \implies\:   \:{  \rm{ \tan(B)  =   - \dfrac{4}{22}   }}  \\

 \\    \:  \implies\:   \large{ \boxed{  \rm{ \tan(B)  =   - \dfrac{2}{11}   }}}  \\

Similar questions