Math, asked by shivangi590, 9 months ago


If tan (A + B) = √3 and tan (A - B) =1, 0° <(A + B) < 90° and
A > B, then find A and B.

Answers

Answered by Brâiñlynêha
72

Given :-

● tan(A+B)=√3

● tan(A-B)=1

and 0°<(A+B)<90°

To find :-

The value of A and B

A.T.Q :-

\sf\:\implies tan(A+B)=\sqrt{3}\\ \\ \sf\:\:\:We \:know\:that\: tan60{}^{\circ}=\sqrt{3}\\ \\ \sf\implies So,\: tan(A+B)=tan60{}^{\circ}\\ \\ \sf\bullet A+B=60{}^{\circ}--------(i)

\sf\implies tan(A-B)=1\\ \\ \sf\:\: \bullet tan45{}^{\circ}=1\\ \\ \sf\implies tan(A-B)=tan 45{}^{\circ}\\ \\ \sf\:\:\:\bullet A-B=45{}^{\circ} ------(ii)

Now add equation (i) and (ii)

\sf\implies A\cancel{+B}+A\cancel{-B}=60{}^{\circ}+45{}^{\circ}\\ \\ \sf\implies 2A=105{}^{\circ}\\ \\ \sf\implies A=\cancel{\dfrac{105}{2}}\\ \\ \sf\implies A=52.5{}^{\circ}

  • Now the value of B

\sf\implies A+B=60{}^{\circ}\\ \\ \sf\implies 52.5{}^{\circ}+B=60{}^{\circ}\\ \\ \sf\implies B=60{}^{\circ}-52.5{}^{\circ}\\ \\ \sf\bullet B=7.5{}^{\circ}

\boxed{\sf{A=52.5{}^{\circ}}}

\boxed{\sf{B=7.5{}^{\circ}}}

Answered by Anonymous
0

{\underline{\huge{\mathbf{\color{pink}{question}}}}}

If tan (A + B) = √3 and tan (A - B) =1, 0° <(A + B) < 90° and

A > B, then find A and B.

___________________________❤

Given

  • tan(A+B)=√3
  • tan(A-B)=1
  • 0°<(A+B)<90°

To find :-

  • The value of A and B

step by step solution:-

 tan(A+B)=\sqrt{3}

  •  tan 60 = \sqrt 3
  •  (A+ B) = 60 -------------(i)

tan (A-B) = 1

  •  tan 45 = 1
  •  tan(A-B)=tan 45-----------(ii)

Now add equation (i) and (ii)

\sf A\cancel{+B}+A\cancel{-B}=60{}^{\circ}+45{}^{\circ}\\ \\ \sf2A=105{}^{\circ}\\ \\ \sfA=\cancel{\dfrac{105}{2}}\\ \\ \sf A=52.5{}^{\circ}

put value of A in eq 1

 A+B=60

{}^{\circ}\\ \\ \sf 52.5{}^{\circ}+B=60{}^{\circ}\\ \\ \sf B=60{}^{\circ}-52.5{}^{\circ}\\ \\ \sf B=7.5{}^{\circ}

answers :-

\boxed{\sf{A=52.5{}^{\circ}}}

\boxed{\sf{B=7.5{}^{\circ}}}

________________❤

Similar questions