If tan (A + B) =√3 and tan (A – B) =1/√3, 0° < A + B ≤ 90°; A > B, find A and B.
Answers
Answered by
1
Answer:
Solution: tan (A + B) = √3 ⇒ tan (A + B) = tan 60° ⇒ (A + B) = 60° ... (i) tan (A – B) = 1/√3 ⇒ tan (A - B) = tan 30° ⇒ (A - B) = 30° ... (ii) Adding (i) and (ii), we get A + B + A - B = 60° + 30° 2A = 90° A= 45° Putting the value of A in equation (i) 45° + B = 60° ⇒ B = 60° - 45° ⇒ B = 15° Thus, A = 45° and B = 15°
hope it helps ☺️
please mark me as your BRAINLIST Please
Answered by
1
Answer:
A= 45° B= 15°
Step-by-step explanation:
Given tan(A+B)=√3⟹A+B=60∘⋯(1)
tan(A−B)=31⟹A−B=30∘⋯(2)
(1)+(2)⟹2A=90∘⟹A=45∘
Put A value in (1)
⟹B=60∘−45∘=15∘
Similar questions