If tan(A+B) =√3 and tan (A-B) =1/√3 0°angle A+B 90°A B find A and B
Answers
Step-by-step explanation:
tan(A+B)= √3 (tan60°=√3)
A+B= 60 °
A= 60°-B (1)
tan(A-B)= 1/√3 (tan30°= 1/√3)
A-B= 30°
From equation (1)
(60°-B)-B= 30°
60°-2B= 30°
-2B= 30°-60°
B= -30/-2= 15°
Therefore
A= 60°-B
= 60°-15
= 45
Therefore A= 45° and B = 15°
EXPLANATION.
⇒ tan(A + B) = √3 - - - - - (1).
⇒ tan(A - B) = 1/√3. - - - - - (2).
⇒ 0° ≤ A + B ≤ 90°.
As we know that,
We can write equation as,
⇒ tan(A + B) = tan60° - - - - - (1).
⇒ tan(A - B) = tan30° - - - - - (2).
Adding equation (1) & (2), we get.
⇒ A + B = 60° - - - - - (1).
⇒ A - B = 30° - - - - - (2).
We get,
⇒ 2A = 90°.
⇒ A = 45°.
Put the value of A = 45° in equation (1), we get.
⇒ A + B = 60°.
⇒ 45° + B = 60°.
⇒ B = 60° - 45°.
⇒ B = 15°.
Value of A = 45° & B = 15°.
MORE INFORMATION.
Fundamental trigonometric identities.
(1) = sin²θ + cos²θ = 1.
(2) = 1 + tan²θ = sec²θ.
(3) = 1 + cot²θ = cosec²θ.