Math, asked by raehteronpi160, 4 months ago

if tan ( A + B ) = √3 and tan ( A - B ) = 1/√3 , A>B , then find the value of A ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ​

Answers

Answered by hemanthvadapalli123
0

\huge\bold{Question:-}

  • If tan (A + B) =√3 and tan (A - B) = \frac{1}{ \sqrt{3} }
  • Find the Value of A

\huge\bold{Solution:-}

Given,

 \tan \:( A + B) =  \sqrt{3}

 \tan \: (A - B) =  \frac{1}{ \sqrt{3} }

We know that

 \tan \: 60 \degree  =  \sqrt{3}

 \tan 30\degree  =  \frac{1}{ \sqrt{3} }

So,

(A + B) = 60°_______(1)

(A - B) = 30°_______(2)

Solving (1) and (2)

A + B = 60°

(+) A - B = 30°

-----------------

2A = 90°

-----------------

A \:  =  \frac{90}{2}  = 45 \degree

Hope this is helpful

Answered by Athul4152
1

ANSWER :- A = 45 °, B = 15°

tan ( A+ B ) = √3

(A+ B) = tan {}^{ - 1} ( \sqrt{3} )

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: A+ B = 60 {} \: ^{0}  -  -  -  -  - (1)

tan ( A - B ) =   \frac{1}{√3} \\

(A-B) = tan^{-1} \frac{1}{√3} \\

(A - B ) = 30° -  -  -  -  -  - (2)

A + B = 60°----------------(1)

A - B = 30°-----------------(2)

(1)+(2)

   \implies

 2A = 90°

\implies \: A \:  =  \frac{90}{2}  \\

\implies45°

\implies \: A + B = 60

\implies \: B \:  = 60 - 45 \\  =  15°

Similar questions