Math, asked by Tarun6584, 1 month ago

if tan (a+b)=√3 and tan (a-b)=1/√3
Find A and B.

Please fast !

Answers

Answered by Anonymous
18

Given tan(A+B)=3⟹A+B=60∘⋯(1) </p><p></p><p> tan(A−B)=31⟹A−B=3(2) </p><p></p><p>(1)+(2)⟹2A=90∘⟹A=45∘</p><p></p><p>Put A value in (1)</p><p></p><p>⟹B=60∘−45∘=15∘</p><p></p><p>

Answered by Anonymous
62

Given :-

• tan (a+b)=√3 and tan (a-b)=1/√3

Need to find :-

Value of A and B ?

Answer :-

A = 45° and B = 15°

Step - By - Step - Explanation :-

Refer in the attachment !

More Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &amp; \bf{0}^{ \circ} &amp; \bf{30}^{ \circ} &amp; \bf{45}^{ \circ} &amp; \bf{60}^{ \circ} &amp; \bf{90}^{ \circ} \\ \\ \rm sin A &amp; 0 &amp; \dfrac{1}{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{ \sqrt{3}}{2} &amp;1 \\ \\ \rm cos \: A &amp; 1 &amp; \dfrac{ \sqrt{3} }{2}&amp; \dfrac{1}{ \sqrt{2} } &amp; \dfrac{1}{2} &amp;0 \\ \\ \rm tan A &amp; 0 &amp; \dfrac{1}{ \sqrt{3} }&amp;1 &amp; \sqrt{3} &amp; \rm \infty \\ \\ \rm cosec A &amp; \rm \infty &amp; 2&amp; \sqrt{2} &amp; \dfrac{2}{ \sqrt{3} } &amp;1 \\ \\ \rm sec A &amp; 1 &amp; \dfrac{2}{ \sqrt{3} }&amp; \sqrt{2} &amp; 2 &amp; \rm \infty \\ \\ \rm cot A &amp; \rm \infty &amp; \sqrt{3} &amp; 1 &amp; \dfrac{1}{ \sqrt{3} } &amp; 0 \end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}

Attachments:
Similar questions