If tan(A+B)= √3 , and tan(AB) = 1/√3. Find A and B if 0
Answers
Answered by
5
Solution=>
Tan [A + B] = √3
Tan [A + B] = Tan 60°
[A + B] = 60°
A + B = 60 -[1]
tan[ A - B] = 1/√3
Tan [A-B] = Tan 30°
A-B = 30° -[2]
[1] - [2]
A + B = 60
A - B = 30
2 A = 90
A = 45
B = 30.
Tan [A + B] = √3
Tan [A + B] = Tan 60°
[A + B] = 60°
A + B = 60 -[1]
tan[ A - B] = 1/√3
Tan [A-B] = Tan 30°
A-B = 30° -[2]
[1] - [2]
A + B = 60
A - B = 30
2 A = 90
A = 45
B = 30.
Answered by
1
tan(A+B) = √3
as we know tan60° = √3
So, tan(A+B) = √3 = tan60°
So, A+B = 60° _____(i)
Also, tan(AB) = 1/√3
we know, tan30° = 1/√3
So, tan(AB) = 1/√3 = tan30°
AB = 30° ________(ii)
Now, From (i), we can write (A = 60° - B)
So, put this value of A in (ii), we get:
→ (60°-B)B = 30°
→ 60°B - B² = 30°
→ B² - 60°B + 30° = 0
Solve it...
Thankyou!!!
Similar questions
Accountancy,
7 months ago
India Languages,
7 months ago
English,
7 months ago
English,
1 year ago
Math,
1 year ago