If tan (A + B) = √3, tan (A − B) = (1/√3), 0° < A + B < 90°, A > B, find A and B. Also calculate, tanA sin(A + B) + cos A tan (A − B).
Answers
Answered by
0
Explanation:
sorry I am understanding
Answered by
1
A = 45° and B = 15°
Explanation:
Given:
tan (A + B) = √3
tan (A − B) = 1/√3
0° < A + B < 90°, A > B
We know that tan 60° = √3.
So tan (A + B) = √3 = tan 60°
A + B = 60° ------(1)
We know that tan 30° = 1/√3
So tan (A - B) = 1/√3 = tan 30°
A - B = 30° ------(2)
Adding equations 1 & 2, we get: 2A = 90°
A = 90° / 2 = 45°
Substituting A in equation 1, we get:
45° + B = 60°
B = 60° - 45° = 15°
Solved. A = 45° and B = 15° satisfies all conditions 0° < A + B < 90°, A > B.
tanA sin(A + B) + cos A tan (A − B) = tan45° sin(45°+ 15°) + cos 45° tan (45° − 15°)
= tan45° * sin60° + cos 45° * tan 30°
= (1 * √3 / 2 ) + (1 / √2 * 1/√3 )
= √3 / 2 + 1/√2.√3
= √2√3 + 1 / 2√3
Similar questions