Math, asked by lavina1235, 8 months ago

) If tan (a+b) = √ 3 tan (a-b) = 1/√ 3. Then find A and B
Please answer​

Answers

Answered by jalynandi85
0

Given tan(A+B)=3⟹A+B=60∘⋯(1) 

Given tan(A+B)=3⟹A+B=60∘⋯(1)  tan(A−B)=31⟹A−B=30∘⋯(2) 

Given tan(A+B)=3⟹A+B=60∘⋯(1)  tan(A−B)=31⟹A−B=30∘⋯(2) (1)+(2)⟹2A=90∘⟹A=45∘

Given tan(A+B)=3⟹A+B=60∘⋯(1)  tan(A−B)=31⟹A−B=30∘⋯(2) (1)+(2)⟹2A=90∘⟹A=45∘Put A value in (1)

Given tan(A+B)=3⟹A+B=60∘⋯(1)  tan(A−B)=31⟹A−B=30∘⋯(2) (1)+(2)⟹2A=90∘⟹A=45∘Put A value in (1)⟹B=60∘−45∘=15∘

Answered by pritisanjeev947268
0

Answer:

the correct answer is a=15°  and b=45°...

Step-by-step explanation:

tan (a+b)=√3,

tan (a+b)=tan 60°,

tan is cutoff in both the side,

=a+b=60°    (this is the first equation),

tan(a-b)=1/√3,

tan (a-b)=tan 30°,

a-b=30°,           (this is the second equation)

equating the equation 1st and 2nd,

we get,

a=15°  and b=45°.................

hope it is helpful for u.......

Similar questions