Math, asked by pujaghosh9051, 4 months ago

) If tan (A+B) = √3, tan (A-B) = 1, and A, B (B<A) are acute angles, find A and B.​

Answers

Answered by OyeeKanak
12

 \huge \sf{ \red{ \underline{ \underline{Question:-}}}}

 \boxed{ \mathfrak{ \pink{If  \: tan  \: (A+B) = √3, \:  tan (A-B) = 1, and  \: A, B (B&lt;A)  \: are  \: acute \:  angles, \:  find  \: A  \: and \:  B.}}}

Given:-

  • tan(A+B)= √3

To find:-

  • Value of A and B.

 \huge \rm{ \color{grey}{Solution:- }}

⇒ tan(A+B)=tan60°ㅤㅤㅤㅤ [tan60°=√3]

⇒A+B=60° ㅤㅤㅤㅤㅤ (i)

Also, tan(A-B)=1

⇒A- B= 45°ㅤㅤㅤㅤㅤ (ii)

  • From equation (i) and (ii)

A + B = 60 \degree \\ A - B = 45 \degree  \\   \underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\ 2A = 105 \degree

⇒A= \frac{105 \degree}{2}  = 52  \frac{1 \degree}{2}

  • Substituting the value of A equation 1 ,we get:-

 \frac{105 \degree}{2} + B = 60 \degree

B = 60 \degree -  \frac{105 \degree}{2}

 =  \frac{120 \degree - 105 \degree}{2}  =  \frac{15 \degree}{2}  = 7  \frac{1 \degree}{2 }

 \boxed{ \underline{ \sf{ \pink{Hence,A  = 52 \frac{1 \degree}{2}  \: and \: B = 7  \frac{1 \degree}{2} }}}}

Answered by UniqueBabe
3

Answer:

⇒ tan(A+B)=tan60°ㅤㅤㅤㅤ [tan60°=√3]

⇒A+B=60° ㅤㅤㅤㅤㅤ (i)

Also, tan(A-B)=1

⇒A- B= 45°ㅤㅤㅤㅤㅤ (ii)

From equation (i) and (ii)

A+B=60°A−B=45°‾2A=105°\begin{lgathered}A + B = 60 \degree \\ A - B = 45 \degree \\ \underline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: } \\ 2A = 105 \degree\end{lgathered}

A+B=60°

A−B=45°

2A=105°

⇒A=105°2=521°2⇒A= \frac{105 \degree}{2} = 52 \frac{1 \degree}{2}⇒A=

2

105°

=52

2

Substituting the value of A equation 1 ,we get:-

105°2+B=60°\frac{105 \degree}{2} + B = 60 \degree

2

105°

+B=60°

B=60°−105°2B = 60 \degree - \frac{105 \degree}{2}B=60°−

2

105°

2

120°−105°

=

2

15°

=7

2

Hence,A=52

2

andB=7

2

Similar questions