) If tan (A+B) = √3, tan (A-B) = 1, and A, B (B<A) are acute angles, find A and B.
Answers
Given:-
- tan(A+B)= √3
To find:-
- Value of A and B.
⇒ tan(A+B)=tan60°ㅤㅤㅤㅤ [tan60°=√3]
⇒A+B=60° ㅤㅤㅤㅤㅤ (i)
Also, tan(A-B)=1
⇒A- B= 45°ㅤㅤㅤㅤㅤ (ii)
- From equation (i) and (ii)
- Substituting the value of A equation 1 ,we get:-
Answer:
⇒ tan(A+B)=tan60°ㅤㅤㅤㅤ [tan60°=√3]
⇒A+B=60° ㅤㅤㅤㅤㅤ (i)
Also, tan(A-B)=1
⇒A- B= 45°ㅤㅤㅤㅤㅤ (ii)
From equation (i) and (ii)
A+B=60°A−B=45°‾2A=105°\begin{lgathered}A + B = 60 \degree \\ A - B = 45 \degree \\ \underline{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: } \\ 2A = 105 \degree\end{lgathered}
A+B=60°
A−B=45°
2A=105°
⇒A=105°2=521°2⇒A= \frac{105 \degree}{2} = 52 \frac{1 \degree}{2}⇒A=
2
105°
=52
2
1°
Substituting the value of A equation 1 ,we get:-
105°2+B=60°\frac{105 \degree}{2} + B = 60 \degree
2
105°
+B=60°
B=60°−105°2B = 60 \degree - \frac{105 \degree}{2}B=60°−
2
105°
2
120°−105°
=
2
15°
=7
2
1°
Hence,A=52
2
1°
andB=7
2
1°