Math, asked by nadia3694, 4 days ago

If tan (a + b) = 5/12 and cot (a - b) =4/ 3. then tan 2b is equal to (1)-16/63 (2) 12/35 (3) -9/28​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

\rm \: tan(a + b) = \dfrac{5}{12}  \\

and

\rm \: cot(a  -  b) = \dfrac{4}{3}  \\

\rm\implies \:\rm \: tan(a  -  b) = \dfrac{3}{4}  \\

Now, Consider

\rm \: tan2b \\

can be rewritten as

\rm \: =  \: tan(b + b) \\

\rm \: =  \: tan(b + b + a - a) \\

can be rewritten as

\rm \: =  \:tan[(a + b) - (a - b)] \\

\rm \: =  \:\dfrac{tan(a + b) - tan(a - b)}{1 + tan(a + b) \: tan(a - b)}  \\

\rm \: =  \:\dfrac{\dfrac{5}{12}  - \dfrac{3}{4} }{1 + \dfrac{5}{12}  \times \dfrac{3}{4} }

\rm \: =  \:\dfrac{\dfrac{20 - 36}{48} }{1 + \dfrac{15}{48}}

\rm \: =  \:\dfrac{\dfrac{- 16}{48} }{ \dfrac{48 + 15}{48}}

\rm \: =  \: -  \: \dfrac{16}{63}  \\

Hence,

\rm\implies \:\boxed{\sf{  \: \: \rm \: tan2b \: =  \: -  \: \dfrac{16}{63} \:  \:  \: }}  \\

Hence, Option (1) is correct.

\rule{190pt}{2pt}

Formula used :-

\boxed{\sf{  \:\rm \: tan(x - y) =  \frac{tanx - tany}{1 + tanx \: tany}  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\boxed{\sf{  \:\rm \: sin(x + y) = sinxcosy + sinycosx \:  \: }} \\

\boxed{\sf{  \:\rm \: sin(x  -  y) = sinxcosy  -  sinycosx \:  \: }} \\

\boxed{\sf{  \:\rm \: cos(x + y) = cosxcosy - sinxsiny \:  \: }} \\

\boxed{\sf{  \:\rm \: cos(x  -  y) = cosxcosy  +  sinxsiny \:  \: }} \\

\boxed{\sf{  \:\rm \: tan(x  +  y) =  \frac{tanx  +  tany}{1  -  tanx \: tany}  \:  \: }} \\

Similar questions