if tan(A+B) = root 3, tan (A-B) = 1/ root 3. Find A and B
Answers
Answered by
3
Solution :-
Given ,
- tan ( A + B ) = √3
- tan ( A - B ) = 1/√3
We need to find ,
- ∠A = ?
- ∠B = ?
_________________
• tan ( A + B ) = √3 …eq(1)
• tan ( A - B ) = 1/√3 …eq(2)
Taking Equation 1 & simplifying ,
→ tan ( A + B ) = √3
Substituting √3 = tan60°
→ tan ( A + B ) = tan60°
→ A + B = 60°
→ A = 60° - B …eq(3)
Taking Equation 2 & simplifying
→ tan ( A - B ) = 1/√3
Substituting 1/√3 = tan30°
→ tan ( A - B ) = tan30°
→ A - B = 30°
→ A = 30° + B …eq(4)
Now , from eq 1 & 2
⇒ 60° - B = 30° + B
⇒ 60° - 30° = B + B
⇒ 30° = 2B
⇒ B = 30°/2
⇒ ∠B = 15°
Now , substituting the value of ∠B in eq(3)
⇒ A = 60° - 15°
⇒ ∠A = 45°
Hence , ∠A = 45° & ∠B = 15°
Similar questions