if tan (A+B) = root3 and tan (A-B) = 1/root3, find A and B
Answers
Answered by
32
Given :-
- If tan (A + B) = √3 and,
- tan (A - B) = 1/√3
To find :-
- Value of A and B
Solution :-
tan (A + B) = √3
tan(A + B) = tan 60°
A + B = 60° ............................. (i)
and,
tan(A - B) = 1/√3
tan(A - B) = tan30°
A - B = 30° .............................(ii)
Adding equation (i) and (ii),
(A + B) + (A - B) = 60 + 30
⤇ A + A + B - B = 90
⤇ 2A = 90
⤇ A = 90/2
⤇ A = 45°
Putting the value of A in equation (i),
A + B = 60
⤇ 45 + B = 60
⤇ B = 60 - 45
⤇ B = 15°
Hence,the value of A and B will be 45° and 15°
Similar questions