Math, asked by nokochan, 6 months ago

if tan θ = a/b , show that a sin θ - b cos θ/ a sin θ + b cos θ = a² - b²/a²+b²​

Answers

Answered by geepinky1257
0

Step-by-step explanation:

Step-by-step explanation: We are given the following :

\tan\theta=\dfrac{a}{b}.tanθ=

b

a

.

We are to prove the following relation :

\dfrac{a\sin\theta-b\cos\theta}{a\sin\theta+b\cos\theta}=\dfrac{a^2-b^2}{a^2+b^2}.

asinθ+bcosθ

asinθ−bcosθ

=

a

2

+b

2

a

2

−b

2

.

We will be using the following trigonometric formula :

\dfrac{\sin A}{\cos A}=\tan A.

cosA

sinA

=tanA.

We have

\begin{gathered}L.H.S.\\\\\\=\dfrac{a\sin\theta-b\cos\theta}{a\sin\theta+b\cos\theta}\\\\\\=\dfrac{\dfrac{a\sin\theta-b\cos\theta}{\cos\theta}}{\dfrac{a\sin\theta+b\cos\theta}{\cos\theta}}~~~~~~~~~~~~~~[\textup{dividing both nemerator and denominator by }\cos\theta]\\\\\\=\dfrac{a\dfrac{\sin\theta}{\cos\theta}-b}{a\dfrac{\sin\theta}{\cos\theta}+b}\\\\\\=\dfrac{a\tan\theta-b}{a\tan\theta+b}\\\\\\=\dfrac{a\times\dfrac{a}{b}-b}{a\times\dfrac{a}{b}+b}\\\\\\=\dfrac{\dfrac{a^2-b^2}{b}}{\dfrac{a^2+b^2}{b}}\\\\\\=\dfrac{a^2-b^2}{a^2+b^2}\\\\=R.H.S.\end{gathered}

L.H.S.

=

asinθ+bcosθ

asinθ−bcosθ

=

cosθ

asinθ+bcosθ

cosθ

asinθ−bcosθ

[dividing both nemerator and denominator by cosθ]

=

a

cosθ

sinθ

+b

a

cosθ

sinθ

−b

=

atanθ+b

atanθ−b

=

b

a

+b

b

a

−b

=

b

a

2

+b

2

b

a

2

−b

2

=

a

2

+b

2

a

2

−b

2

=R.H.S.

Hence proved.

Similar questions