Math, asked by sarkarmou0610, 3 months ago

if tan(a+b)=tana+tanb/1-tana tanb find the value of tan(22.5)​

Answers

Answered by mathdude500
7

\large\underline{\sf{Answer -  }}

\large\underline{\sf{Given \: that- }}

 \sf \: \rm :\longmapsto\:tan(a + b) = \dfrac{tana + tanb}{1 - tana \: tanb}

\rm :\longmapsto\:Put \: a \:  =  \: 22.5 \degree \: and \: b \:  =  \: 22.5\degree \:

 \sf \: \rm :\longmapsto\:tan(22.5\degree \:  + 22.5\degree \: ) = \dfrac{tan22.5\degree \:  + tan22.5\degree \: }{1 - tan22.5\degree \:  \: tan22.5\degree \: }

\rm :\longmapsto\:tan45\degree \:  = \dfrac{2tan22.5\degree \: }{1 -  {tan}^{2} 22.5\degree \: }

\rm :\longmapsto\:1 \:  = \dfrac{2tan22.5\degree \: }{1 -  {tan}^{2} 22.5\degree \: }

\rm :\longmapsto\: \:  {2tan22.5\degree \: } = {1 -  {tan}^{2} 22.5\degree \: }

\rm :\longmapsto\:\: {2tan22.5\degree \: } +   {tan}^{2} 22.5\degree \:  - 1 = 0

\rm :\longmapsto\: {tan}^{2} 22.5\degree \:  + 2tan22.5\degree \:  - 1 = 0

Its a quadratic equation in tan22.5°, whose solution is given by

\rm :\longmapsto\:tan22.5\degree \:  = \dfrac{ - 2 \:  \pm \:  \sqrt{ {2}^{2}  - 4  \times 1 \times ( - 1)} }{2 \times 1}

\rm :\longmapsto\:tan22.5\degree \:  = \dfrac{ - 2 \:  \pm \:  \sqrt{4 + 4} }{2}

\rm :\longmapsto\:tan22.5\degree \:  = \dfrac{ - 2 \:  \pm \:  \sqrt{8} }{2}

\rm :\longmapsto\:tan22.5\degree \:  = \dfrac{ - 2 \:  \pm \: 2 \sqrt{2} }{2}

\rm :\longmapsto\:tan22.5\degree \:  =  - 1 \:  \pm \:  \sqrt{2}

\rm :\longmapsto\:tan22.5\degree \:  =  \sqrt{2}  - 1 \:  \:  \: or \:  \:  \:  -  \sqrt{2}  - 1

 \sf \:As \: tan22.5\degree \: lies \: in \:  {1}^{st}  \: quadrant \:  \therefore \: tan22.5\degree \:  > 0

Thus,

\rm :\longmapsto\:tan22.5\degree \:  =  \sqrt{2}  - 1

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions