Math, asked by shahajiya89, 1 month ago

 If Tan ⊖ = a∕b, then (a sin⊖ + b cos⊖) / (a sin⊖ - b cos⊖) = ? ​

Answers

Answered by anindyaadhikari13
28

\texttt{\textsf{\large{\underline{Solution}:}}}

Given:

 \tt \implies  \tan \theta =  \dfrac{a}{b}

We have to evaluate the given expression.

Given Expression,

 \tt =  \dfrac{a \sin \theta  + b \cos \theta}{a \sin \theta - b \cos \theta}

Dividing both numerator and denominator by cos θ, we get,

 \tt =  \dfrac{ \dfrac{a \sin \theta  + b \cos \theta}{ \cos \theta }}{ \dfrac{a \sin \theta - b \cos \theta}{ \cos \theta}}

 \tt =  \dfrac{a  \dfrac{\sin \theta}{\cos \theta} + b  \dfrac{\cos \theta}{ \cos \theta}}{a  \dfrac{\sin \theta}{\cos \theta} -  b  \dfrac{\cos \theta}{ \cos \theta}}

As we know that,

 \tt \implies \tan \theta =  \dfrac{\sin \theta}{ \cos \theta}

Therefore, we get,

 \tt =  \dfrac{a  \tan \theta +  b }{a  \tan \theta  -  b }

Substituting the value of tan θ, we get,

 \tt =  \dfrac{a \times  \dfrac{a}{b} +  b }{a \times  \dfrac{a}{b} -  b }

 \tt =  \dfrac{ \dfrac{ {a}^{2} }{b} +  b }{ \dfrac{ {a}^{2} }{b} -  b }

 \tt =  \dfrac{ \dfrac{ {a}^{2} +  {b}^{2}  }{b}}{ \dfrac{ {a}^{2}  -  {b}^{2} }{b}}

Cancelling out b, we get,

 \tt =  \dfrac{ {a}^{2} +  {b}^{2}  }{{a}^{2}  -  {b}^{2} }

Which is our required answer.

\texttt{\textsf{\large{\underline{Learn More Formulae}:}}}

1. Relationship between sides.

  • sin(x) = Height/Hypotenuse.
  • cos(x) = Base/Hypotenuse.
  • tan(x) = Height/Base.
  • cot(x) = Base/Height.
  • sec(x) = Hypotenuse/Base.
  • cosec(x) = Hypotenuse/Height.

2. Square Formulae.

  • sin²x + cos²x = 1.
  • cosec²x - cot²x = 1.
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x).
  • cos(x) = 1/sec(x).
  • tan(x) = 1/cot(x).

4. Cofunction Identities.

  • sin(90° - x) = cos(x) and vice versa.
  • cosec(90° - x) = sec(x) and vice versa.
  • tan(90° - x) = cot(x) and vice versa.

5. Quotient Relations.

  • tan(x) = sin(x)/cos(x)
  • cot(x) = 1/tan(x) = cos(x)/sin(x)
Answered by TrustedAnswerer19
39

Answer:

Given,

 \sf  tan \theta =  \frac{a}{b}

We know that,

 \sf \: tan\theta =  \frac{sin\theta}{cos\theta }

Now,

\orange{\sf \:  \frac{a \: sin\theta + b \: cos\theta}{a \: sin\theta  - b \: cos\theta}} \\   \\  \pink{\sf =  \frac{ \frac{a \: sin\theta}{cos\theta}  +  \frac{b \: cos\theta}{cos\theta} }{\frac{a \: sin\theta}{cos\theta}   -   \frac{b \: cos\theta}{cos\theta}}}  \\   \\  \sf =  \frac{a \: tan\theta + b}{a \: tan\theta - b}  \\  \\  \sf =  \frac{a \times  \frac{a}{b}  + b}{a \times  \frac{a}{b} - b }  \\  \\  \sf =  \frac{ \frac{ {a}^{2} +  {b}^{2} }{\cancel{b}} }{ \frac{ {a}^{2}  -  {b}^{2} }{\cancel{b}} }  \\  \\  \sf   =  \frac{ {a}^{2} +  {b}^{2} }{ {a}^{2}  -  {b}^{2} }

So,

 \large \green{ \boxed{  \sf \:  \frac{a \: sin\theta + b \: cos\theta}{a \: sin\theta - b \: cos\theta}  =  \frac{ {a}^{2}  +  {b}^{2} }{ {a}^{2} -  {b}^{2}  } }}

Similar questions