Math, asked by punitkumardas746, 4 months ago


If tan θ = a/b then prove that

a Sin θ - b Cos θ/a sin θ+ b cos θ=(a^2 - b^2)/ ( a^2+ b^2)​

Answers

Answered by anindyaadhikari13
4

Required Answer:-

Given:

  • tan(x) = a/b

To prove:

 \rm \mapsto \dfrac{a \sin(x) - b \cos(x) }{a \sin(x)  + b \cos(x) }  =  \dfrac{ {a}^{2} -  {b}^{2} }{ {a}^{2} +  {b}^{2}  }

Proof:

Given that,

 \rm \implies \tan(x)  =  \dfrac{a}{b}

 \rm \implies  \dfrac{Height}{Base}   =  \dfrac{a}{b}

Let Height = ka, Base = kb

Therefore Hypotenuse,

 \rm =  \sqrt{ {(ka)}^{2} + (kb)^{2}  }

 \rm =  \sqrt{ {k}^{2}( {a}^{2} +b^{2})  }

 \rm =  k\sqrt{ {a}^{2} +b^{2}  }

So,

 \rm \implies \sin(x)  =  \dfrac{ka}{k \sqrt{ {a}^{2} +  {b}^{2}  } }  =  \dfrac{a}{ \sqrt{ {a}^{2} +  {b}^{2}  } }

And,

 \rm \implies \cos(x)  =  \dfrac{kb}{k \sqrt{ {a}^{2} +  {b}^{2}  } }  =  \dfrac{b}{ \sqrt{ {a}^{2}  +  {b}^{2} } }

Taking LHS,

 \rm\dfrac{a \sin(x) - b \cos(x) }{a \sin(x)  + b \cos(x) }

 \rm = \dfrac{a \times  \dfrac{a }{ \sqrt{ {a}^{2}  +  {b}^{2} } }  - b  \times  \dfrac{b}{ \sqrt{ {a}^{2} +  {b}^{2}  } } }{a \times  \dfrac{a}{ \sqrt{ {a}^{2}  +  {b}^{2} } }   + b \times  \dfrac{b}{ \sqrt{ {a}^{2} +  {b}^{2}  } }  }

 \rm = \dfrac{ \dfrac{ {a}^{2} }{ \sqrt{ {a}^{2}  +  {b}^{2} } }  - \dfrac{ {b}^{2} }{ \sqrt{ {a}^{2} +  {b}^{2}  } } }{ \dfrac{ {a}^{2} }{ \sqrt{ {a}^{2}  +  {b}^{2} } }   +  \dfrac{ {b}^{2} }{ \sqrt{ {a}^{2} +  {b}^{2}  } }  }

 \rm = \dfrac{ \dfrac{ {a}^{2} -  {b}^{2} }{ \sqrt{ {a}^{2}  +  {b}^{2} } }  }{ \dfrac{ {a}^{2}  +  {b}^{2} }{ \sqrt{ {a}^{2}   +   {b}^{2} } }  }

 \rm = \dfrac{ {a}^{2} -  {b}^{2}  }{ {a}^{2}  +  {b}^{2} }

= RHS (Hence Proved)

Answered by Anisha5119
4

Answer:

Heya mate here's the answer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions