Math, asked by swarupbanerjee, 2 months ago

if tanθ=a/b then sinθ/cos^3θ + cosθ/sin^3θ=?
if \: \tan(θ) = a \div \: b\: then \: what \: value \: of( \: \sin(θ) \div \cos^3θ) +( \cos θ \div \sin ^3θ )\  \textless \ br /\  \textgreater \ ​

Answers

Answered by sandy1816
1

tan \theta =  \frac{a}{b}  \\ sec \theta =  \sqrt{1 +  {tan}^{2} \theta }  \\  =  \sqrt{1 +  \frac{ {a}^{2} }{ {b}^{2} } }  \\  =  \frac{ \sqrt{ {a}^{2}  +  {b}^{2} }  }{b}  \\ cos \theta =  \frac{b}{ \sqrt{ {a}^{2} +  {b}^{2}  } }  \\ sin \theta =  \sqrt{1 -  {cos}^{2} \theta }  \\  =  \sqrt{1 -  \frac{ {b}^{2} }{ {a}^{2} +  {b}^{2}  } }  \\  =   \frac{a}{ \sqrt{ {a}^{2} +  {b}^{2}  } } \\ \\ \huge Now \:  \:  \:  \:  \:  \frac{sin \theta}{ {cos}^{3}  \theta}  +  \frac{cos \theta}{ {sin}^{3}  \theta}  \\ \\ =  \frac{ {sin}^{4}  \theta +  {cos}^{4}  \theta}{ {sin}^{3}  \theta  {cos}^{3}  \theta}\\  \\  =  \frac{( { {sin}^{2}  \theta +  {cos}^{2} \theta })^{2}  - 2 {sin}^{2}  \theta {cos}^{2} \theta }{ {sin}^{3} \theta {cos}^{3}  \theta } \\ \\  =  \frac{1 - 2 {sin}^{2}  \theta \:  {cos}^{2}  \theta}{ {sin}^{3}  \theta \:  {cos}^{3}  \theta}  \\ \\ =  \frac{1 - 2. \frac{ {a}^{2} }{ {a}^{2}  +  {b}^{2} }. \frac{ {b}^{2} }{ {a}^{2}  +  {b}^{2} }  }{ { \frac{ {a}^{3} }{( {a}^{2}  +  {b}^{2} )\sqrt{ {a}^{2}  +  {b}^{2} }  } }. \frac{ {b}^{3} }{( {a}^{2} +  {b}^{2} ) \sqrt{ {a}^{2}  +  {b}^{2} }  }  } \\ \\  =   \frac{ \frac{( { {a}^{2} +  {b}^{2}  })^{2} - 2 {a}^{2}  {b}^{2}  }{( { {a}^{2} +  {b}^{2}  })^{2} } }{ \frac{ {a}^{3} {b}^{3}  }{ ({ {a}^{2}  +  {b}^{2} })^{3} } } \\ \\  =  \frac{ {a}^{4}  +  {b}^{4} }{( { {a}^{2}  +  {b}^{2} })^{2} }  \times  \frac{( { {a}^{2} +  {b}^{2}  })^{3} }{ {a}^{3} {b}^{3}  } \\ \\  =  \frac{( {a}^{4}  +  {b}^{4} )( {a}^{2}  +  {b}^{2} )}{ {a}^{3}  {b}^{3} }

Similar questions