If tan (A + B) - V3 and tan (A - B) = 1, 0°
<A + B < 90°; A > B, then find A and B.
Answers
tan a+b =✓3
a+b = 60
tan a-b= 1/✓3 a-b = 30
so we have 2A =90 =45
from eq 1 we have a+b=60
B = 60-45 = 15
B=15
Step-by-step explanation:
Given:-
tan (A + B) = V3 and tan (A - B) = 1,
0°<A + B < 90°; A > B
To find:-
If tan (A + B) = V3 and tan (A - B) = 1,
0°<A + B < 90°; A > B, then find A and B.
Solution:-
Given that :-
Tan (A + B) = √3
=>Tan (A + B) = Tan 60°
A + B = 60° ---------(1)
Tan (A - B)= 1
=>Tan(A - B) = Tan 45°
A - B = 45° ---------(2)
On solving (1)&(2)
A + B = 60°
A - B = 45°
(+)
___________
2 A + 0= 105°
___________
=>2 A = 105°
=> A = 105°/2
A= 52.5°
On Substituting the value of A in (1) then
=>52.5° + B = 60°
=>B = 60° - 52.5°
=> B = 7.5°
Answer:-
The value of A = 52.5°
The value of B = 7.5° for the given problem
Check:-
If A = 52.5° and B = 7.5° then
1)LHS=Tan (A+ B)
=>Tan (53.5°+7.5°)
=>Tan60°
=>√3= RHS
LHS=RHS
2)Tan(A-B)
=>Tan(52.5°-7.5°)
=>Tan45°
=>1=RHS
LHS=RHS
Used formulae:-
- Tan 60°=√3
- Tan 45°=1