If tan a = c/d
prove that d cos 2a + c sin 2a = d.
Answers
Answered by
1
tan(a) = c/d
d*sin(a) = c*cos(a) ----------------------> 1
Since sin(2A) = 2 sin(A)cos(A)
Multiply both sides of 1 with 2 sin(a)
2d*sin²(a) = c*sin(2a) ----------------> 2
Now the question says d*cos(2a) + c*sin(2a) = d to be proved,
Substituting 2, we have
d*cos(2a) + 2d*sin²(a) as LHS
Since, cos(2A) = cos²(A) - sin²(A)
d*(cos²(a) - sin²(a)) + 2d*sin²(a)
d*cos²(a) + d*sin²(a)
d(cos²(a) + sin²(a))
d.
Hence LHS = RHS is proved.
Similar questions