Math, asked by kushibhatt99744, 9 months ago

if tan A + Cot A =2 find the value of tan ^99 A+cot^99 A
plz help ​

Answers

Answered by pariharamisha55
1

Answer:

Answer is 1

Step-by-step explanation:

tanA +CotA =2

  1. tanA+1/tanA =2
  2. tan^2A+1=2tanA
  3. tan^2A-2tanA+1=0
  4. tan^2A -tanA -tanA +1=0
  5. tanA(tanA-1) -1(tanA-1) =0
  6. (tanA -1)(tanA-1) =0
  7. tana=1and cotA=1
  8. tan^99A+cot^99=1
Answered by Anonymous
7

Answer :

Value of \sf{tan^{99}+cot^{99}} is 2.

Solution :

Given that ,

tanA + cotA = 2

We know ,

{\boxed{\sf{cotA=\dfrac{1}{tanA}}}}

\to\sf{tanA+cotA=2}

\to\sf{tanA+\dfrac{1}{tanA}=2}

\to\sf{\dfrac{tan^2A+1}{tanA}=2}

\to\sf{tan^2A+1=2tanA}

\to\sf{tan^2A-2tanA+1=0}

\to\sf{(tanA-1)^2=0}

\to\sf{tanA-1=0}

\to\sf{tanA=1}

★Now find the value of \sf{tan^{99}+cot^{99}}

\sf{tan^{99}+cot^{99}}

\to\sf{tan^{99}+\dfrac{1}{tanA^{99}}}

  • Put tanA = 1.

\to\sf{1^{99}+\dfrac{1}{1^{99}}}

\to\sf{1+1}

\to\sf{2}

__________________

Some trigonometric formulas :-

★ sin2∅ = 2sin∅ cos∅

★ cos2∅ = 2cos²∅ -1

\sf{tan\theta=\dfrac{1-cos2\theta}{1+cos2\theta}}

★ 1-co2∅ = 2sin²∅

\sf{tan2\theta=\dfrac{2tan\theta}{1-tan^2\theta}}

\sf{tan3\theta=\dfrac{3tan\theta-tan^3\theta}{1-3tan^2\theta}}

\sf{1+cos2\theta=2cos^2\theta}

Similar questions