if tan A + Cot A =2 find the value of tan ^99 A+cot^99 A
plz help
Answers
Answered by
1
Answer:
Answer is 1
Step-by-step explanation:
tanA +CotA =2
- tanA+1/tanA =2
- tan^2A+1=2tanA
- tan^2A-2tanA+1=0
- tan^2A -tanA -tanA +1=0
- tanA(tanA-1) -1(tanA-1) =0
- (tanA -1)(tanA-1) =0
- tana=1and cotA=1
- tan^99A+cot^99=1
Answered by
7
Answer :
Value of is 2.
Solution :
Given that ,
tanA + cotA = 2
We know ,
★Now find the value of
- Put tanA = 1.
__________________
★ Some trigonometric formulas :-
★ sin2∅ = 2sin∅ cos∅
★ cos2∅ = 2cos²∅ -1
★
★ 1-co2∅ = 2sin²∅
★
★
★
Similar questions