Math, asked by dynamichub001, 6 months ago

if tan A + cot A = 2, then sin 2A =

Answers

Answered by Asterinn
2

Given :

  • tan A + cot A = 2

To find :

  • sin 2A

Concept used :

  • tan x = sinx/cos x

  • cot x = Cos x / sin x

  • Sin 2x = 2 sin x cos x

  • sin²x + cos²x = 1

Solution :

 \sf \implies tan  \: A  + cot  \: A = 2

\sf \implies  \dfrac{sin \: A}{cos \: A}   +  \dfrac{cos \: A}{sin \: A} = 2

LCM of cos A and Sin A = Cos A Sin A

\sf \implies  \dfrac{ {sin \:}^{2}  A   + {cos}^{2}  \: A}{cos \: A \: sin \: A}    = 2

\sf \implies  \dfrac{ 1}{cos \: A \: sin \: A}    = 2

\sf \implies1  = 2 {cos \: A \: sin \: A}

\sf \implies1  ={\: sin \: 2 A}

Answer : 1

__________________

Learn more:-

1. Cosθ = base / hypotenuse

2. cossecθ = 1/ sinθ

3. sec θ = 1/cosθ

4. Cotθ = 1/ tanθ

5. Sin²θ+ Cos²θ= 1

6. Sec²θ - tan²θ = 1

7. cosec ²θ - cot²θ = 1

8. sin(90°−θ) = cos θ

9. cos(90°−θ) = sin θ

10. tan(90°−θ) = cot θ

11. cot(90°−θ) = tan θ

12. sec(90°−θ) = cosec θ

13. cosec(90°−θ) = sec θ

14. Sin2θ = 2 sinθ cosθ

15. cos2θ = Cos²θ- Sin²θ

Similar questions