if tan a + cot a = 3, find value of ( tan^2a + cot^2 a) *( tan^3a + cot^3a)
Answers
Answered by
9
Answer :-
126
Solution :-
1. Finding tan²a + cot²a
tan a + cot a = 3
Squaring on both sides
⇒ (tan a + cot a)² = 3²
⇒ tan² a + cot² a + 2 * tan a * cot a = 9
[ Because (x + y)² = x² + y² + 2xy ]
⇒ tan² a + cot² a + 2 * tan a * 1/tan a = 9
[ Because cot a = 1/tan a ]
⇒ tan² a + cot² a + 2 = 9
⇒ tan² a + cot² a = 9 - 2 = 7
2. Finding tan³a + cot³a
tan a + cot a = 3
Cubing on both sides
⇒ (tan a + cot a)³ = 3³
⇒ tan³ a + cot³ a + 3 * tan a * cot a * (tan a + cot a) = 27
[ Because (x + y)³ = x³ + y³ + 3xy(x + y) ]
⇒ tan³ a + cot³ a + 3 * tan a * 1/tan a * 3 = 27
[ Because tan a + cot a = 3 ]
⇒ tan³ a + cot³ a + 9 = 27
⇒ tan³ a + cot³ a = 27 - 9 = 18
3. Finding (tan² a + cot² a) * (tan³ a + cot³ a)
(tan² a + cot² a) * (tan³ a + cot³ a) = 7 * 18 = 126
Therefore the value of (tan² a + cot² a) * (tan³ a + cot³ a) is 126.
Similar questions